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Wave reflection from a gently sloping beach 
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The linear reflection of an obliquely incident gravity wave of frequency o from a 
gently sloping beach of shoreline slope u and characteristic length 1 is determined for 
u 4 1 4 &/g. An asymptotic (u 4 0), inviscid approximation that is uniformly valid 
in the shallow-water domain is matched to Keller’s (1958) geometrical-optics 
approximation for non-shallow water. An exact solution is obtained for the profile h 
= uZ[1 -exp (-z/Z)] in the shallow-water domain and used to test the asymptotic 
approximation. The absence of viscosity implies perfect reflection. A model that 
incorporates both small viscosity and small capillarity predicts a fixed contact line 
and the reflection coefficient JRI = exp [ -7cu-2g-’(2v03)r], where v is the kinematic 
viscosity. These predictions are in qualitative agreement with the experimental 
results of Mahony & Pritchard (1980). 

1. Introduction 
I consider here the linear reflection of a gravity wave from a gently sloping beach 

of depth 

where u is the shoreline (z = 0) slope, 1 = O(h,/u) is a characteristic length of the 
beach, H is a smooth, monotonically increasing function, and h, is the offshore 
depth. The characteristic length for a wave of frequency o ranges from (h,/K)i to 
1/K, where 

K = w 2 / g ,  

and the parameters of the inviscid problem are u and Kh,. The free-surface 
displacement has the form 

<(z,y , t )  = a,Z(z)cos(wt-kk,y) (0 < 2 < 00, -00 < y < a), (1.3) 

where a, is the shoreline (z = 0) amplitude, k, is the longshore wavenumber, and 
Z ( z )  is to  be determined subject to the boundary conditions (cmax E a, and mass 

Z =  1, h Z = O  (z=O). (1.4a, b )  
flux = 0) 

The absence of dissipation implies perfect reflection, by virtue of which 

Z - A c o s [ ( ~ ~ , - ~ ~ ) & + + ]  ( k , x t  CO), (1.5) 

where k ,  is determined by the gravity-wave dispersion relation 

k, tanh (k, h,) = K ,  (1.6) 

and the offshore amplitude a,  = Aa, and phase shift + are to be obtained as part of 
the solution (although in practice a, is specified and a, is inferred from A = a,/a,). 
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The earliest solutions of this linear, inviscid reflection problem (see Stoker 1957, 
$5.1) are for uniform slope with u = tan ( ~ / 2 n ) ,  n = 1 , 2 , .  . . , but these solutions are 
cumbersome for the most important (for oceanography) case of small slope. Matched 
asymptotic approximations for normal incidence and a Q 1 have been determined 
for uniform slope by Friedrichs (1948) and for non-uniform slope by Keller (19611, 
who matched his (1958) geometrical-optics approximation for Kl >> 1 to the 
shallow-water approximation (Lamb 1932, $ 186) 

2 = J O [ 2 ( K x / ~ ) ; ]  (h  - CTX Q l / K ) ,  (1 .7)  

where J ,  is a Bessel function. Carrier & Greenspan (1958) have solved the nonlinear 
problem for non-breaking reflection from a uniform slope and shown that Ka, < u2 
is necessary for a smooth solution. Their solution reduces to (1.7) for Ku, Q u2. 

The approximation (1.7) is often adopted in the investigation of edge waves (see 
Guza 1985 for a review) and other shore processes on the hypothesis that the 
disturbances associated with these processes are essentially confined to the domain 
of uniform slope; however, this hypothesis fails in some problems, and, in any event, 
its testing requires the development of approximations that incorporate non-uniform 
slope. Towards that end, I develop (in $ 2 )  an approximation that is uniformly valid 
in x = O(1) for u -g 1 Q KZ Q l/a and (in $4) match that approximation to a 
geometrical-optics approximation for arbitrary Kh,. In  $3, I obtain an exact 
solution of the shallow-water equations for an exponential profile through an 
extension of Ball’s (1967) solution for edge waves. This exact solution provides a test 
of the asymptotic approximations of $2. 

Viscosity is almost always significant in laboratory experiments (although it may 
be negligible for non-breaking waves of geophysical scale). In  $5) I consider its effects 
on normally incident waves on the assumption of no slip at the bottom, K6,  Q u2, 
and h = O(S,/u),  where 6, = (v/2w); is a viscous lengthscale (v is the kinematic 
viscosity), and h is the capillary length (2.8 mm for clean water). The corresponding 
extension of the shallow-water equation (Miles 1990) predicts total absorption (zero 
reflection) of the incident wave if capillarity is neglected ( A  = 0). If 0 < h = 0(8,/ r )  
capillarity is significant only in an inner approximation, which may be matched to 
an outer, boundary-layer approximation (which assumes h % 6, and manifestly fails 
as h$O). This matching determines the reflection coefficient. If h is given by (1.1) for 
x 5 x1 (so that hm = axl), as in a typical laboratory experiment, the reflection 
coefficient referred to x = x 1  is given by 

(1.8) 

for a clean free surface. The exponent is doubled for a fully contaminated surface. 
(Note that dissipation implies an exponential increase/decrease of the incident/ 
reflected wave as xf co, in consequence of which IRI is intrinsically sensitive to 
the location of the reference station.) It should be emphasized that the assumption 
of no slip a t  the bottom implies a fixed contact line. This prediction is supported by 
Mahony & Pritchard’s (1980) laboratory experiments, but not by oceanographic 
observation. 

Mahony & Pritchard (1980) measured lRll = 0.114 for u = 0.09 and 2n/w = 0.70 s, 
for which (1.8) yields lRJ = 0.22 on the assumption of a clean surface or 0.048 for a 
fully contaminated surface. Guza & Bowen (1976) report almost perfect reflection 
for cr = 0.1 and 2x/w = 2.4-3.4 s, for which (1.8) predicts lRIl = 0.90-0.82; the 
difference 1 - lRll is within the accuracy of their measurements, but their contact line 
was moving (Guza, private communication). 

lRll = exp [ -27c(K6,/a2)] 
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2. Shallow-water domain 
The assumptions of incompressible, irrotational fluid motion with 

Kao Q uz, Kh Q 1,  (2.1 a, 6 )  

lead to the shallow-water equation (Lamb 1932, $ 193) 

gv . (hvg = a21jlat2. (2.21 

( h Z ’ ) ’ + ( K - k i h ) Z  = 0. (2.3) 

(2.4) 

Substituting (1.3) into (2.2) and invoking w 2 / g  = K ,  we obtain the Sturm-Liouville 
equation 

We seek the solution of (2.3), subject to (1.4), for 

E = u/Kl Q 1. 

2.1. Asymptotic solution 
Guided by (1.7) and by ErdBlyi’s (1955, $4.1) treatment of Liouville’s problem, we 
posit 

where 

Z(Z) = [h(K- k i h ) ] - i ( & ~ ~ ) v ( f ( ; y ) ,  

and 

is a measure of obliquity. Transforming (2.3) and (1.4), we obtain 

@ ZE u k i  1/K = E(kg 1)’ 

f”+x-’f’+f= rf 

and f = 1, xf’= 0 (x= O ) ,  

where 
- (K2 + 4k; h2) h a  = (K-2kih)h” { ( K  - ki h)2 4(K- k i  h)3h 

f’  = df/dx, and h‘ = dh/dx. We remark that r(X) is regular and has the limiting 
values 

(2.10a, b )  r(0)  = Ss(H:-P), r N 1 4x -2 ( E X 2 T W ) .  

A first approximation to the solution of (2.7) and (2.8) is given by 

(2.11) 

(2.12) 

where x is given by (2.5b), provides a uniformly valid approximation to the solution 
of (1.4) and (2.3). Letting uzJ 0, we recover the inner approximation (1.7).  Letting 
x co, we obtain the outer approximation 

Z ( X )  - (a/x)i[h(K - ki ~ ) ] - ~ [ c o s  (x-@) + O(X-’)] (X f 00). (2.13) 

Letting h N h, in (2.13) with Kh, 4 1,  comparing with (1.5), and invoking 

k i  h,/K = (k , /k , )2  = sin2 Bi (Kh, Q l),  (2.14) 

where k ,  = w/(gh,)i  is the offshore wavenumber and 8, is the angle of incidence, we 
obtain 

A = (u/n)i(Kh,)-)(sec 8,); = ui(.rck, h, cos 8,)-4 ( 2 . 1 5 ~ )  

3-2 
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and 
a, 

$ = I [ ( K h - l - k ~ ) ~ - k , c o s O , ] d x - ~ x .  
0 

(2.15b) 

2.2. Higher approximations 

To construct higher approximations, we regard (2.7) as an inhomogeneous Bessel 
equation, solve by variation of parameters, and invoke (2.8) to obtain the Volterra 
integral equation 

f(x) = J O ( X )  + s” Q(Xl R) r(R)f(R) dR9 ( 2 . 1 6 ~ )  

where G(X,  R) = k i ? r J o c i )  YO(X) -Jo(x) &(?)I. (2.16b) 

The solution of (2.16) may be obtained by iteration. Substituting the first 
approximation f(i) = Jo(R) into ( 2 . 1 6 ~ )  and integrating by parts, we obtain the 
second approximation 

0 

(2.17 a )  

(2.176) 
J o  

= Jo(x)  + $(x) J l ( X )  + O(2)  = Jo[ (1 - r)$q + O(e2) ( 2 . 1 7 ~ )  

( ( 2 . 1 7 ~ )  may be derived heuristically by regarding r as slowly varying in (2.7)). The 
outer approximation (2.13) remains unchanged in these higher approximations and 
is valid to any algebraic order in e (but it may exhibit an exponentially small error 
as ~ $ 0 ;  see $3). 

3. Exponential profile 
The shallow-water equation (2.3) admits exact solutions for (cf. Ball 1967) 

h = d( 1 -e-”’l) ( H  = 1 - e-f, h, = crl). (3.1) 

Adopting H as the independent variable, we obtain 

= Re{eiTf~(~+p-i7,g-p-i7; 1 ;  l-e-”} ( 3 . 2 ~ )  

= Re{& eiTfF($+p-i7,$-p-ii7; 1 -2i7;e-f)}, (3.26) 

where Re signifies the real part of, F is Gauss’s hypergeometric function, 

p = (a+ e-1 sin2 o,);, 7 = e-; cos di, (3.3a, 6) 

2 r ( 2 i ~ )  
r (g+p + iT) r(+ - p  + i7) ’ d =  (3.4) 

and Bi is the angle of incidence given by (2.14) with h, = d therein. 

r( 1 - z )  = TC cosec AZ and (T(iy) I = (A/Y sinh ~ ~ y ) i ,  we obtain 
Letting [ t  GO in (3.26), comparing the result with (1.5), and invoking T(z) x 

A = [dl = ( T C T ) - ; ( C O S ~  T C ~  coth TCT+ sin2 T C ~  tanh AT); (3.5a) 

and $ = a r g d  = argr(2i7)-2argT(i+p+iT)+tan-l(tannptanhm). (3.5b) 

The approximation implied by (2.15a) with h, = rrl therein is A = (m)-;, which is 
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exponentially close to (3.5a) in the limit E J O  and differs therefrom by less than 
0.01 YO for E < a. 

It does not appear possible to  reduce (3.5b) to elementary transcendents, but 
asymptotic ( E  J 0) approximations may be obtained from the asymptotic expansion 
of the gamma function. For normal incidence (p = g, 7 = e-i), 

$ - ~ - ~ l n 4 - ~ n + $ + O ( ~ ~ ) .  (3.6) 

The corresponding approximation implied by (2.15 6) is 

$ = e-5 [(1-e-g)-$-1]d[-Ln 4 = e-k1n4-inx, 4 JOW 
which differs from (3.6) by less than 7.5% for E < i. 

(3.7) 

4. Transition to non-shallow water 
We now suppose that Kh % 1 is satisfied out to a depth for which (2.13) is a valid 

approximation, but that h continues to increase (with x) to non-shallow values. It 
then follows from Keller’s (1958) geometrical-optics approximation that Z ( x )  has the 
form 

Z = A ( x )  COS[Y(Z)]+O(~/KZ), (4.1) 

where A and Y satisfy 

Y 2  + kl = k2,  [A2 sech2 kh(sinh2 kh +Kh) “1‘ = 0, (4.2a, 6) 

and k tanh kh = K. (4.3) 

Integrating (4.2), matching (4.1) to (2.13) to determine the constants of integration, 
and eliminating the hyperbolic functions with the aid of (4.3), we obtain 

(4.4a) 

A = ( 2 a n ) k ( k 2  - ki)-i[K + h(k2 - K2)]-i. (4.4b) 

Letting k, = 0, we recover Keller’s (1961) results. 
Letting h-t  h, + 00 in (4.3) and (4.4), we obtain k+ k, + K  and 

A - (2a/n)i(sec 0,); (Kh, f 00)  (4.5) 

as the deep-water counterpart of the shallow-water approximation (2 .15~) .  

5. Viscous and capillary effects 

domain. Assuming normal incidence and replacing (1.3) by 
We now admit viscosity and capillarity in the two-dimensional, shallow-water 

5 = a Re {Z(x)  e-iwt}, (5.1) 

where a is an amplitude scale, Re implies the real part of, and Z is a dimensionless, 
complex amplitude, we find that (2.3) is replaced by (Miles 1990) 

[p(2-h22”)’]’+K.?3 = 0, p = h-6tanh (h/6), (5.2a, b )  

where ~r (v/u);eti”= (I+i)a.+,  (5 .3)  
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6, = (v /Sw);  is a viscous lengthscale, and h = (T /pg) i  is the capillary length (T is the 
surface tension). The corresponding boundary conditions (for h N vx as xJ.0) are 

2 = 0,  p ( Z - h 2 2 ) ’  = 0 (z = 0). (5.4a, b) 

The preceding formulation is for a clean surface. If the surface is fully contaminated 
(inextensible) 6 is replaced by 26 in (5 .2b) .  

5.1. Inner and outer approximations 
We proceed on the assumptions that la1 < 1 and y = 0(1), where 

( 5 . 5 ~ )  b )  

Capillarity then is negligible in h 9 a,, and (5 .2)  admits an outer approximation of 
the form (cf. (2.12) with k, = 0 therein) 

Z = [K(h- S)]-’(~ax)~[EJo(x) cos xo - &(x) sin xo] ,  ( 5 . 6 ~ )  

where (5.6b) 

and, by hypothesis, xo = O(a). 
Assuming that h x ax for ux = O(6) and introducing the inner variables 

h ux 
s s  6 = - = -, z = Z,([), (5 .7a,  b )  

we transform (5 .2)  to 

[a(Zi-y2Z~)’]‘+aZi = 0, a = [-tanh[. (5.8a, b) 

Integrating ( 5 . 8 ~ )  from 0 to [, so that (5 .4b)  is satisfied, dividing by w ,  and 
integrating again, we obtain 

Ri-y2Z; = C,+aF(g), F(5)  =-It 5* fZi([)d[, (5 .9a,  b )  

where C, and 5, are interdependent constants of integration. Integrating ( 5 . 9 ~ )  and 
invoking ( 5 . 4 ~ ~ )  and 2, = O( 1 )  for [+ co, we obtain 

lw(rl) 0 

2, = C,(1 -e-<h) +- [e-ls-lll/r-e-(5+.tS)ly]F(rl) dq. (5.10) 
2Y a 1: 

The integral equation (5.10) may be solved by iteration, starting from the first 
approximation C,[1 -exp ( - [ / y ) ] ,  the substitution of which into (5.96) yields 

(5.11) 

where, here and subsequently, error factors of 1 + O(a)  are implicit. Letting E +  co, 
anticipating that % 1 so that w([) - 6- 1 holds throughout the range of 
integration in (5.1 l) ,  and substituting the resulting approximation to F into (5 .9a) ,  

[-E,+(l-y)log (5.12) 
we obtain 

Returning to the outer approximation (5.6) and letting h N ux and x + O ,  we - 2 ~ - ~ [ ~ ( h - c ~ ) l t  = 2[a(5-  i)]’ ( 5 . 1 3 ~ )  
obtain 
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2 - [ 1 - a(6- i ) ]  cos xo - 7c-1 sin xo log [Cza(6- l)], 
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(5.13 6 )  and 

where C = 1.78 ... is Euler's constant. We match (5.12) and (5.13b) by choosing 

C, = cosx,, tanx, = 7ca(l-y), ~ ,+(l-y) log(6,-1)  = 1+(1-y)log(1/Ca2), 
(5.14 a-c) 

wherein error factors of 1 + O(a2) are implicit. 
Finally, we let x - f  03 in ( 5 . 6 ~ )  to obtain (cf. (2.13) with k, = 0 therein) 

2 - ( U / ~ [ : ) ~ [ K ( ~ - & ) ] - ~ C O S ( X + X , - $ ) ,  x - k,x+X*, (5.15a, 6 )  

I - 
where k, = - km""K+ [ (h  - 8)-t - (h ,  - &)-:I dx. (5.16 a, 6 )  (ha?&)' '*=a 
Combining (5.15) and (5.16), we place the result in the form 

2 = ~(~/7c)~R~,1[K(h-&)]-a(e-""m" +R, eikmZ)], (5.17 a )  

where R, = exp[2i(xO+x*-$r)] (5.176) 

is the reflection coefficient referred to x = 0. 
We are interested primarily in the magnitude of R,. Letting 

lRol = e-p, (5.18) 

and approximating tanx, by xo in (5.14b) (note that ay is real), we obtain 

p = 2~ Im a = 27c~-~K&,. (5.19) 

5.2, Wedge projile 
The development in (5.15)-(5.17) assumes smooth h(x), but in the typical wave tank 

(5.20) 

and h' is discontinuous at  x = xl. The outer approximation (5.6) then reduces to 

2 = J,(x) cosxo- &(x) sinx,, x = 2~-~[K(h-&)]i  (x < x,), (5.21a, 6 )  

while the solution in x > x1 has the form 

where R, is the reflection coefficient referred to x = x1 (note that h, = h, and 
k, = k,). Requiring 2 and 2' to be continuous at  x = xl, we obtain 

Letting x1 + co in (5.23 b ) ,  we obtain (5.23a, b)  

R, - exp C w X o  +x1 -w [ I +  O(x;')l>. (5.24) 

Comparing (5.24) and.(5.17b) and invoking (5.16a, b ) ,  h, = h,  and k, = k,, we obtain 

R, = RopZikizl, lRll = e-p[l+O(X;l)]. (5.25a, b)  

Considering, for example, the experiments of Mahony & Pritchard (1980), for 
which w = 9.06 s-', u = 0.090, h, = 3 em, g = 980 cm/s2, and h = 0.28 em (for clean 
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water), we obtain K = 0.084 cm-l, 161 = 0.033 cm, 1011 = 0.34, IyI = 0.76, )xll = 11.2, 
p = 1.52 and lRll = 0.22. The observed value was lRll = 0.114 (p = 2.17). If the 
surface were fully contaminated S would be doubled, which would yield p = 3.0 and 
lRll = 0.048. Mahony & Pritchard state that ‘the surface of the water was skimmed 
with a vacuum pump’ before the start of each experiment, but this may not have 
been sufficient to avoid a t  least partial contamination before the completion of a 
particular measurement. Allowing for this possibility, we conclude that the 
agreement between the present calculation of lRJ and Mahony & Pritchard’s 
observed value is within the uncertainties associated with the error factor 1 + O(a)  in 
the calculation and the free-surface condition in the experiments. 

Guza & Bowen (1976) observed almost perfect reflection for cr = 0.1 and 2n/o = 
2.4-3.4 s (la1 = 0.043-0.025), for which (5.26) predicts lRll = 0.90-0.82 for clean 
water. However, their estimate of complete reflection was based on the fit of the 
observed profile to that predicted by the inviscid theory and is as consistent with 
lRll = 0.8 as with lRll = 1 (Guza, private communication). 
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